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Abstract 1 

 2 

The twelve weather and climate models participating in the Global Land-Atmosphere Coupling 3 

Experiment (GLACE) show both a wide variation in the strength of land-atmosphere coupling 4 

and some intriguing commonalities.  In this paper, we address the causes of variations in 5 

coupling strength – both the geographic variations within a given model and the model-to-model 6 

differences.  The ability of soil moisture to affect precipitation is examined in two stages, namely, 7 

the ability of the soil moisture to affect evaporation, and the ability of evaporation to affect 8 

precipitation.  Most of the differences between the models and within a given model are found to 9 

be associated with the first stage – an evaporation rate that varies strongly and consistently with 10 

soil moisture tends to lead to a higher coupling strength.  The first stage differences reflect 11 

identifiable differences in model parameterization and model climate.  Intermodel differences in 12 

the evaporation-precipitation connection, however, also play a key role. 13 
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1. Introduction 1 

Interaction between the land and atmosphere plays an important role in the evolution of 2 

weather and the generation of precipitation.  Soil moisture may be the most important state 3 

variable in this regard. Much research has been conducted on the effects of soil wetness 4 

variability on weather and climate, encompassing various observational studies (e.g., Namais 5 

1960; Betts et al. 1996; Findell and Eltahir 2003) and theoretical treatments (e.g., Entekhabi et al 6 

1992, Eltahir 1998).  These studies notwithstanding, the strength of land-atmosphere interaction 7 

is tremendously difficult to measure and evaluate.  Consider, for example, attempts to quantify 8 

the impact of soil moisture on precipitation through joint observations of both.  Precipitation may 9 

be larger when soil moisture is larger, but this may tell us nothing, for the other direction of 10 

causality – the wetting of the soil by precipitation – almost certainly dominates the observed 11 

correlation.  Global-scale or even regional-scale estimates of land-atmosphere coupling strength 12 

simply do not exist. 13 

This difficulty motivates the use of numerical climate models to address the land-14 

atmosphere feedback question.  With such models, idealized experiments can be crafted and 15 

sensitivities carefully examined. A few recent examples include the studies of Dirmeyer (2001), 16 

Koster and Suarez (2001), Schlosser and Milly (2002), and Douville (2003). 17 

Modeling studies, of course, are far from perfect.  The ability of land states to affect 18 

atmospheric states in atmospheric general circulation models (AGCMs) is not explicitly 19 

prescribed or parameterized, but is rather a net result of complex interactions between numerous 20 

process parameterizations in the model.  As a result, land-atmosphere interaction varies from 21 

model to model, and this model dependence affects AGCM-based interpretations of land use 22 
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impacts on climate, soil moisture impacts on precipitation predictability, and so forth (Koster et 1 

al. 2002). The broad usage of GCMs for such research and the need for an appropriate 2 

interpretation of model results makes necessary a comprehensive evaluation of land-atmosphere 3 

interaction across a broad range of models. The Global Land-Atmosphere Coupling Experiment 4 

(GLACE) was designed with this in mind. 5 

In GLACE, twelve AGCMs perform the same highly-controlled numerical experiment, 6 

an experiment designed to characterize land-atmosphere interaction quantitatively.  In GLACE, 7 

three 16-member ensembles of 3-month simulations are performed: an ensemble in which the 8 

land states of the different members vary independently and interact with the atmosphere (W); an 9 

ensemble in which the same geographically- and temporally-varying land states are prescribed 10 

for each member (R), and an ensemble in which only the subsurface soil moisture values are 11 

prescribed for each member (S).  By quantifying the inter-ensemble similarity of precipitation 12 

time series within each ensemble and then comparing this similarity between ensembles, we can 13 

isolate the impact of the land surface on precipitation – we can quantify the degree to which the 14 

atmosphere responds consistently to anomalies in land states.  (The degree of consistent response 15 

is hereafter referred to as the “land-atmosphere coupling strength”).  The companion paper 16 

(Koster et al., this issue) describes the experiment and analysis approach in detail and provides 17 

an overview of the model comparison. 18 

Note that the focus on subsurface moisture (ensemble S above) is of special interest.  It is 19 

well accepted that the variability of soil moisture is much slower than that of atmospheric states 20 

(Dirmeyer 1995).  Hope for improving the accuracy of seasonal forecasts lies partly with the 21 

“memory” provided by soil moisture.  By quantifying the impact of subsurface soil moisture on 22 
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precipitation, GLACE helps evaluate a model’s ability to make use of this memory in seasonal 1 

forecasts. 2 

 Koster et al. (this issue) and Koster et al. (2004) highlight “hot spots” of land-atmosphere 3 

coupling -- regions of strong coupling between soil moisture and precipitation that are common 4 

to many of the AGCMs. What causes such commonalities, and how do they relate to 5 

climatological and hydrological regime? Which aspects of land surface and atmospheric 6 

parameterization cause the large model-to-model differences of coupling strength among the 7 

AGCMs?  How are the signals that exist in the land surface states transmitted to and manifested 8 

in the atmosphere states? 9 

 Such critical questions lie at the heart of our understanding of land-atmosphere feedback.  10 

Arguably, a fully comprehensive analysis of these questions would require additional sensitivity 11 

experiments and model-dependent analysis techniques, all of which are beyond the scope of 12 

GLACE.  Nevertheless, the design of GLACE and the diagnostics provided by the participants 13 

do provide powerful insight into how a soil moisture signal is translated into an evaporation 14 

signal, which in turn is translated to a precipitation signal – and for how and why these 15 

translations differ amongst the AGCMs.  Such an analysis is presented in the present paper.  First, 16 

section 2 addresses the geographical patterns of coupling strength seen in the models. Section 3 17 

then provides an analysis of intermodel differences in coupling strength. Further discussion and a 18 

summary of our findings are presented in section 4. 19 

2. Commonalities in coupling strength 20 
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 The multi-model synthesis used in the companion paper (Koster et al., this issue) proves 1 

effective for identifying robust regions (across models) of significant soil moisture impact on 2 

precipitation and near-surface air temperature – the identified regions are less subject to 3 

problems in the process parameterizations of any individual model.  We can apply the same 4 

multi-model analysis procedure here to the other model variables. As in the companion paper 5 

(see section 5 of Part 1), we first disaggregate variables from each model to the same fine grid, 6 

one with a resolution of 0.5º · 0.5º.  We then average the results on that grid across the models, 7 

applying the same weight to each model.   8 

 As explained in section 4 of the companion paper (see eq. 2), the variable Ωv measures 9 

the degree to which the sixteen time series for the variable v generated by the different ensemble 10 

members are similar. Thus, Ωv(S)- Ωv(W) or Ωv(R)- Ωv(W) are measures of the regulation of 11 

land states on the atmospheric variable v. As in the companion paper, we computed Ωv and the 12 

standard deviation σv for each model across 224 aggregated 6-day totals (16 ensemble members 13 

times 14 intervals in each simulation time-series). 14 

The upper left panel of Fig. 1 shows the mean of ΩP(S) – ΩP(W) for precipitation across 15 

the 12 models, i.e., the model-average impact of subsurface soil moisture on precipitation.  This 16 

figure essentially repeats the contents of the top panel of Figure 9 from the companion paper.  17 

Notice that the larger soil moisture impacts on precipitation generally occur in the transition 18 

zones between humid and arid climates, such as the central Great Plains of North America, the 19 

Sahel in Africa, and the northern and western margins of the Asian monsoon regions. 20 
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How can we characterize the evaporation signal that best serves as a link between soil 1 

moisture anomalies and precipitation – that best explains the geographical variations of 2 

ΩP(S) -  ΩP(W) shown in Figure 1a, if a local soil moisture influence is assumed?  In Figure 2, 3 

we argue that such an evaporation signal (as a proxy for the full surface energy balance) must 4 

have two characteristics: it must respond similarly to soil moisture variations, and it must show 5 

wide temporal variations.  The four panels show idealized evaporation time-series (i.e., not from 6 

real simulations) for 16 parallel ensemble members under four situations: (i) a low similarity in 7 

the evaporation time series [i.e., a low value of ΩE(S) – ΩE(W)] and a low variability of 8 

evaporation [i.e., a low value of σE(W)]., (ii) a low similarity but a high variability of 9 

evaporation, (iii) a high similarity yet a low variability of evaporation, and (iv) a high similarity 10 

and a high variability of evaporation.  Clearly, cases (i) and (ii) cannot lead to a “robust” 11 

precipitation response (i.e., a similar response across ensemble members) to soil moisture, given 12 

that evaporation is the key link between the two, and evaporation itself has no robust response to 13 

soil moisture.  A robust evaporation response, however, does not by itself guarantee a robust 14 

precipitation response.  For case (iii), the evaporation response to soil moisture is robust, but the 15 

atmosphere would not see a strong signal at the surface due to the low evaporation variability.  16 

Only the fourth situation provides a signal for the atmosphere that is both robust and strong. 17 

We argue that for soil moisture to affect evaporation, both ΩE(S) – ΩE(W) and σE(W) 18 

must be suitably high.  In other words, the product (ΩE(S)- ΩE(W)) · σE(W) must be high.  We 19 

use this diagnostic product throughout this paper to characterize the ability of a local evaporation 20 

signal to support land-atmosphere feedback.  (We assume here that σE(W) and σE(S) are similar; 21 

analysis of the model data confirms this.)  The product proves effective for our purposes, despite 22 
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being a potentially suboptimal diagnostic – it may, for example, already contain some implicit 1 

feedback information through the potential co-evolution of σE and σP, and thus it may partly 2 

reflect the character of the atmosphere and its role in feedback.  Still, the other direction of 3 

causality (precipitation variability causing evaporation variability) is undoubtedly dominant, and 4 

regardless of the source of the evaporation variability, the product still serves as a 5 

characterization of the evaporation signal itself. 6 

The upper right panel of Fig. 1 shows the global distribution of ΩE(S)- ΩE(W) (again, 7 

averaged across the models), and the lower left panel shows that for σE(W).  Neither diagnostic 8 

by itself explains all characteristics of the distribution of ΩP(S) – ΩP(W) (top left panel) .  The 9 

lower right panel shows the distribution of the product (ΩE(S)- ΩE(W)) · σE(W) averaged over 10 

the 12 models (note the different scales among panels).  The spatial correlation between the 11 

geographical patterns of ΩP(S) – ΩP(W) and the product is 0.46, which is larger than that 12 

between ΩP(S) – ΩP(W) and either factor alone (0.35 and 0.2 for σE(W) and ΩE(S) – ΩE(W), 13 

respectively).  Of course, none of these spatial correlations is particularly large.  Nevertheless, as 14 

will be shown in section 3, the diagnostic product (ΩE(S)- ΩE(W)) · σE(W) explains well the 15 

intermodel differences in coupling strength at a given location, much better than can either factor 16 

alone.   17 

The scatter plots in Figure 3 illustrate further the control of hydrological regime on the 18 

product (ΩE(S)- ΩE(W)) · σE(W).  The lines represent a best fit through the mean of the 19 

dependent variable in bins of 200 points each.  A roughly linear inverse relationship is seen 20 

between the soil wetness and ΩE(S)– ΩE(W).  The scatter plot shows that ET (the total 21 
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evaporation) is more sensitive to land state in dry climates than in areas with moderate soil 1 

wetness. The results are consistent with the findings of Dirmeyer et al. (2000), who showed that 2 

the sensitivity of surface fluxes to variations in soil moisture generally concentrates at the dry 3 

end of the range of soil moisture index.  In contrast, the standard deviation of ET (σE) is not large 4 

for low soil moisture, simply because ET itself is small in such regions.  Put together, the product 5 

(ΩE(S)-ΩE(W)) · σE(W) has minima for very wet and very dry soils, and it is largest for 6 

intermediate soil moisture values (degree of saturation between 0.1 and 0.4; see Figure 3c).  7 

Figure 3d shows, for comparison, how ΩP(S)– ΩP(W) varies with soil moisture; the relationship 8 

shows a hint of that seen for (ΩE(S)– ΩE(W)) · σE(W), particularly at the extremes. 9 

The conclusions above were obtained from a multi-model average. We now examine, 10 

with some simple statistical indicators, their relevance to individual models. First, consider the 11 

panels on the left in Fig. 4.  The top panels show the inter-model standard deviation of 12 

Ω(S)- Ω(W) among the 12 models, and the bottom panels show the ratio of the mean to the 13 

standard deviation.  The pattern of the inter-model standard deviation of ΩE(S)– ΩE(W) (left) 14 

largely resembles the field of ΩE(S)– ΩE(W) itself (Fig. 1), except for enhanced variability over 15 

arid regions.  The ratio serves as a measure of signal to noise, showing where there is the least 16 

uncertainty among models.  The pattern of the ratio resembles that of the mean in the upper right 17 

panel in Fig. 1, with some shift away from the arid regions, giving a distribution that overlaps 18 

many of the world’s major agricultural areas.  19 

The implication of the left panels in Fig. 4 is that the regions of strong ET similarity are 20 

relatively common among the models.  The same cannot be said about precipitation similarity 21 

(ΩP(S)-  ΩP(W)).  The right panels in Fig. 4 show the standard deviation and signal- to-noise ratio 22 
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for precipitation similarity. The ratio of the mean to the standard deviation for precipitation 1 

similarity is much weaker than for ET and more dominated by noise. Only over a few regions 2 

(e.g., northern India, China, Pakistan, and parts of sub-Saharan Africa) are there sizeable areas 3 

that approach a ratio of unity (note the difference in scale).  Note also that the strongest signal-to-4 

noise values are still located in regions with strong levels of 12-model mean precipitation 5 

similarity in the upper left panel of Fig. 1.  Large, inter-model variability, however, predominates 6 

over most of the globe. 7 

3. Comparison among GCMs 8 

 While the models show some similarities in the geographical pattern of land-atmosphere 9 

coupling strength, they also show some wide disparities.  Global maps of ΩP(S) -  ΩP(W) were 10 

provided in Fig. 5 of Part 1 for all twelve GCMs.  The major features found in the multi-model 11 

mean are seen in many of the models.  Some areas, though, such as the Northern Amazon and 12 

Orinoco Basins, show significant differences. Also, the coupling strength in general seems 13 

relatively large in the GFDL, NSIPP, and CAM3 models, whereas that for GFS/OSU it seems 14 

very weak.  15 

Similar commonalities and disparities among AGCMs can be found in the impacts of soil 16 

moisture on ET.  We showed in section 2 that the diagnostic (ΩE(S)- ΩE(W)) · σE(W), which 17 

measures the degree to which the evaporation signal is both similar and strong, appears to 18 

explain much of the geographical variation in precipitation similarity for the mean of the models.  19 

Figure 5 shows global maps of this product for each model. The models tend to agree in the 20 

placement of larger values in the transition regions between humid and dry climates, but 21 

disparities abound.  The GFDL model has the highest mean values for the product, whereas 22 
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GFS/OSU has by far the lowest. Indeed, the low values for GFS/OSU by themselves can explain 1 

this model’s globally low precipitation similarity values. 2 

Differences in this diagnostic product are indeed related to differences in land-3 

atmosphere coupling strength.  Figure 6 shows how (ΩE(S)-ΩE(W)) · σE(W) varies with 4 

ΩP(S)- ΩP(W) for the average of global ice-free land points and for the three “hot spot” regions 5 

delineated by dashed lines in Fig. 1.  The high r2 values for the hot spot regions (0.86, 0.84 and 6 

0.51 over the Sahel, northern India, and the central Great Plains of North America, respectively) 7 

suggest that the intermodel differences in (ΩE(S)-ΩE(W)) · σE(W)  are strongly related – and, 8 

given the arguments in section 2, largely explain – the intermodel differences in ΩP(S)-ΩP(W) in 9 

these regions.  (Note that for the global mean in Fig. 6a, the r2 value appears to be determined 10 

mostly by the position of one point.)  Supplemental calculations show that ΩE(S)- ΩE(W) alone 11 

would produce r2 values of 0.84, 0.56, and 0.38, respectively, in the hot spot regions, while 12 

σE(W) alone would produce r2 values of  0.11, 0.62, and 0.40, respectively. 13 

Of course, the relationship is not perfect, due to sampling error, the inability of the 14 

diagnostic to capture fully the evaporation signal’s impact on land-atmosphere feedback, and the 15 

fact that the models also differ in the coupling mechanism between ET and precipitation (section 16 

3c).  Indeed, the separation of the pathway linking soil moisture anomalies and precipitation 17 

generation into two parts – the segment between soil moisture anomalies and evaporation 18 

anomalies and that between evaporation anomalies and precipitation generation – is useful for 19 

understanding the intermodel differences in ΩP(S)- ΩP(W).  In essence, Figure 6 suggests that 20 
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while the first segment is the most important for explaining these differences (the r2 values for 1 

between the associated diagnostic and ΩP(S)- ΩP(W) are high), it is not all- important. 2 

In the remainder of this section, we focus more closely on the models’ representations of 3 

these two segments. We construct a series of indices to measure the overall strength of each 4 

segment within each model, as well as the strength of coupling for the entire path from soil 5 

wetness to precipitation.  The results are summarized in Table 1. 6 

 7 

a. Soil-precipitation coupling: Net effect  8 

The first column after the list of models in Table 1 shows the global mean of the 9 

precipitation similarity diagnostic ΩP(S)- ΩP(W) calculated over all non- ice land points.  The 10 

next column provides the rank of the model (1 indicating the highest global mean, and thus the 11 

model with the strongest control of sub-surface soil moisture on precipitation).  Some grouping 12 

is evident; three models (GFDL, NSIPP and CAM3) show similarly large values of the global 13 

mean index (between 0.032 and 0.040), and another group (CSIRO, UCLA, CCSR, COLA, 14 

GEOS, and BMRC) shows much lower values, ranging from 0.005-0.014.  The HadAM3 and 15 

GFS/OSU models show almost no impact of sub-surface soil wetness on precipitation.   16 

A comparison of the R and S experiments reveals how the specification of “faster” land 17 

variables (temperatures, etc.) affects the model rankings.  In Fig. 7, global means of ΩP(S)-ΩP(W) 18 

are plotted against ΩP(R)- ΩP(W) for each model.  Similar groupings are evident.  Notice that the 19 

rankings are similar (i.e., the points cluster along a diagonal line with positive slope) despite the 20 

differences in the scales of the axes.  In general, if specifying subsurface soil moisture has a 21 
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relatively large impact on the similarity of rainfall in a model, then the specification of all land 1 

variables in the model will also have a relatively large impact on precipitation.  2 

 3 

b. Segment 1: Soil-ET coupling 4 

The first segment of the path in soil-precipitation coupling is from soil wetness variations 5 

to ET variations, which we characterize with the diagnostic (ΩE(S)- ΩE(W)) · σE(W).  Columns 6 

4 and 5 in Table 1 show respectively the global mean of this diagnostic for each model 7 

(calculated over all non-ice land points) and the model’s corresponding rank.  The GFDL model 8 

clearly has the strongest link between subsurface soil wetness and ET. There is a significant gap 9 

to the model in second place (CCCma) and then a fairly continuous spectrum down to the 11th 10 

model (COLA).  GFS/OSU has a very weak coupling between soil wetness and ET and is a clear 11 

outlier.  Note that the centers of the topmost soil layers of the GFDL, BMRC, CCCma and 12 

HadAM3 models are at or are deeper than 5 cm, meaning that for each of these four models, the 13 

soil moisture was continually specified in the topmost layer in the S experiment.  Thus, for these 14 

four models only, bare soil evaporation was directly affected by the soil moisture specification in 15 

case S, helping to increase ΩE(S)- ΩE(W).  (In the GFS/OSU model, the topmost soil layer was 16 

not continually specified in the S ensemble even though the center is exactly 5 cm from the 17 

surface.  Although this implementation of the experiment is not precisely correct, it should have 18 

a limited impact on the computed global average of the (ΩE(S)- ΩE(W)) · σE(W) field.  The 19 

whole of the root zone encompasses a much larger soil volume than the surface layer, and 20 
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supplemental analysis of GFS/OSU’s evaporation fields shows that although bare soil 1 

evaporation is dominant in some regions, transpiration dominates on the global scale.) 2 

As discussed in section 2, the diagnostic (ΩE(S)- ΩE(W)) · σE(W) captures two separate 3 

aspects of the evaporation signal: its variability and its similarity.  Figure 8 shows, for each of 4 

the regions analyzed in Figure 6, the individual quantities σE and ΩE(S)- ΩE(W) for each model.  5 

This breakdown helps us relate differences in the soil-ET coupling to differences in climate 6 

regime and model parameterization.  Differences in σE relate mostly to differences in the 7 

models’ background climatologies (though σE may potentially be amplified through its 8 

coevolution with σP during feedback).  Differences in ΩE(S)- ΩE(W), on the other hand, relate 9 

mostly to differences in incident radiative energy and in the details of the land surface 10 

parameterization – particularly, in those details defining the sensitivity of evaporation to soil 11 

moisture variations.  For example, notice that in panels a) through c) BMRC tends to have 12 

moderately high similarity in its evaporation fluxes (ΩE(S)- ΩE(W)) but very low variability (σE) 13 

– the type of behavior idealized in the third panel of Figure 2.  The low σE for BMRC reflects 14 

the relatively low mean and variability of the precipitation forcing (not shown) for that model 15 

over most of the areas examined – i.e., it results from the model’s background climatology.  The 16 

same arguments regarding evaporation variability apply, to a degree, to the CCSR/NIES model, 17 

particularly over northern India and the Sahel.  The GFDL model, on the other hand, shows 18 

relatively high precipitation variability on a global scale, helping to promote evaporation 19 

variability.  Coupled with the moderate-to-high ΩE(S)- ΩE(W) values for this model, the 20 
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diagnostic (ΩE(S)- ΩE(W)) · σE(W) is especially high, promoting strong land-atmosphere 1 

feedback. 2 

Now consider the COLA model.  Evaporation (and precipitation) variability in the areas 3 

studied is not particularly small for this model, but the evaporation similarity values are (case ii 4 

in Fig 2).  These low similarity values probably reflect this model’s relatively high inter-5 

ensemble variability of net radiation (not shown).   6 

Again, details of the land model parameterization – particularly those associated with 7 

soil-water limited transpiration and how it relates in magnitude to bare soil evaporation and 8 

canopy interception loss – probably explain most of the intermodel differences in ΩE(S)- ΩE(W).  9 

The parameterization in the GFS/OSU model, for example, must be responsible for this model’s 10 

very low ΩE(S)- ΩE(W).  In the India region, at least, the GFS/OSU model does produce a bare 11 

soil evaporation that exceeds transpiration (not shown).  (Curiously, another land model used at 12 

NCEP– the NOAH LSM – shows substantial evaporation sensitivity to soil moisture variations 13 

when coupled to NCEP’s Eta regional model [Berbery et al., 2003].)  A proper analysis of such 14 

model parameterization differences would necessarily be complex and will not be addressed in 15 

this paper. 16 

Other climatic factors may also lead to intermodel differences in (ΩE(S)- ΩE(W)) · σE(W).  17 

For example, because this diagnostic peaks at intermediate values of soil wetness (Figures 3), the 18 

model whose climatology produces the highest fractional area with such soil wetness values 19 

might produce the highest average value fo r the diagnostic. Also, if a model shows large 20 

similarity in evaporation rates in the free-running W experiment (ΩE(W)) due to the initialization 21 
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procedure or to the effects of the oceanic boundary conditions and seasonal radiation forcing 1 

applied, the difference ΩE(S)- ΩE(W) may have a small upper potential limit.  Careful analysis of 2 

the model output, however, shows that neither factor has a first-order impact on the ranking of 3 

the models.  4 

Finally, a comparison of the evaporation diagnostics computed from the R and S 5 

experiments provides some interesting insights into the control of evaporation in the different 6 

models.  Figure 9a shows the global mean (over non- ice land points) of (ΩE(S)- ΩE(W)) · σE(W) 7 

versus the corresponding global mean of (ΩE(R)- ΩE(W)) · σE(W).  Because more variables (i.e., 8 

the fast variables, including surface soil moisture, skin temperature and canopy interception) are 9 

specified in the R experiment than in the S experiment, we expect the evaporation similarity to 10 

be larger for the R experiment, and thus we expect (ΩE(R)- ΩE(W)) · σE(W) to be larger than 11 

(ΩE(S)- ΩE(W)) · σE(W).  This is seen in general on the global scale.  Some models (CAM3, 12 

GFS/OSU, and COLA) show a relatively large difference between (ΩE(R)- ΩE(W)) · σE(W) and 13 

(ΩE(S)- ΩE(W)) · σE(W), suggesting that evaporation in these models is more strongly controlled 14 

by the fast variables.  The higher values of the diagnostic for the R experiment have consequent 15 

impacts on the land-atmosphere coupling strength in that experiment, ΩP(R)- ΩP(W) (Figure 7). 16 

 Similar behavior is observed over the Great Plains and the Sahel (Figure 9bd).  17 

Interestingly, the specification of the fast variables over India (Figure 9c) has an impact on only 18 

a handful of models (COLA, UCLA, GFS/OSU, CAM3, and CCCma) – the rest of the models 19 

fall close to the 1:1 line. 20 
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 1 

c. Segment 2: ET-precipitation coupling 2 

The land surface model and the background climatology may combine to produce a 3 

strong and similar evaporation signal, as in the lowest pane l of Figure 2.  For this to be translated 4 

into an impact on precipitation, however, the second segment of land-atmosphere feedback – the 5 

link between evaporation and precipitation – must be strong.  Returning to Table 1, we present 6 

two different indices to measure this link.  Both indices are inferred from joint analysis of 7 

diagnosed precipitation and ET similarities. 8 

The first index is simply the spatial pattern correlation between (ΩE(R)- ΩE(W)) · σE(W) 9 

and ΩP(R)-  ΩP(W) across the globe. The idea is simple: if the control of ET on precipitation is 10 

local and strong, then the spatial patterns of the evaporation diagnostic and the precipitation 11 

similarity should be highly correlated. The correlations from the R experiment are similar to 12 

those from the S experiment; we use those from the R experiment here simply because they will 13 

not be spuriously high due to the response of bare soil evaporation or interception loss to incident 14 

precipitation.   15 

The second index is the ratio between the global means (over non- ice land points) of 16 

ΩP(S)-  ΩP(W) and (ΩE(S)- ΩE(W)) · σE(W). This gives a global measure of how the second 17 

segment of land-atmosphere coupling (i.e., between evaporation and precipitation) degrades the 18 

link between soil moisture and precipitation, without regard for the “localness” or “remoteness” 19 

of the evaporation impacts. 20 

Table 1 shows that the two indices produce similar rankings among the models.  The 21 

CAM3 and NSIPP models rank considerably higher than the other models in both indices, 22 



 19 

suggesting that their parame terizations for moist convection, boundary layer physics, and/or 1 

other atmospheric processes are especially sensitive to evaporation variations at the land surface.  2 

GEOS and HadAM3 show much lower rankings for the ET—P index than for the SW—ET 3 

index, suggesting that the ET-P connection is weak enough to lose whatever signal is transmitted 4 

from soil wetness to ET.  Both CAM3 and COLA show strong values of the ET—P indices but 5 

do not rank high in the SW—ET  index, suggesting that these models might have an even 6 

stronger coupling between soil wetness and precipitation if a different land surface 7 

parameterization were used or (in the case of the COLA model) if the net radiation were less 8 

variable.  Finally, the small values of all indices for GFS/OSU and BMRC suggest that the lack 9 

of signal in ET may prevent any measure of ET—P coupling; again, a change of land surface 10 

scheme might alter dramatically the behavior of these two models.   11 

The ratio-based index (ET—P)2 can be used to interpret the scatter in Fig. 6a, the plot 12 

showing the relationship between globally-averaged numerator ΩP(S)-  ΩP(W) and denominator 13 

(ΩE(S)- ΩE(W)) · σE(W) for the different models.  The CAM3 and NSIPP models lie well above 14 

a fitted line through the points.  The interpretation of the ratio-based index (ET—P)2 explains 15 

why: these two models have atmospheres that are (relatively) sensitive to evaporation variations.  16 

Similarly, the fact that GEOS and HadAM3 lie below the fitted line can be explained by the 17 

relative insensitivity of their atmospheres to evaporation variations. 18 

Figure 10 summarizes the results of separating land-atmosphere feedback into the two 19 

segments. The x-axis represents the first segment of the coupling, the link between soil wetness 20 

and ET. The y-axis represents the second segment, the link between ET and precipitation as 21 

provided by the correlation-based diagnostic (ET—P)1. The number near each model name in 22 
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Figure 10 shows how the model ranks in total coupling strength over all ice-free land points 1 

(from column 3 of Table 1). 2 

The coupling strength in a model, of course, is controlled by the nature of both segments 3 

of the coupling.  The closer a model is to the upper right corner of the plot, the more likely a soil 4 

wetness anomaly can propagate through the ascending branch of the hydrologic cycle and affect 5 

precipitation.  The figure immedia tely highlights some of the results outlined above; for example, 6 

the low coupling strengths of the BMRC and COLA models results from their weak soil 7 

moisture - evaporation connection, whereas the high coupling strength for the GFDL model 8 

results from its very strong soil moisture - evaporation connection.  Coupling strength is strong 9 

in models such as NSIPP and CAM3 mostly because of the strong connection between ET and 10 

precipitation in these two models. The HadAM3, on the other hand, shows the weakest coup ling 11 

between ET and precipitation, and it thus has one of the weakest coupling strengths. The 12 

HadAM3 result is consistent with findings from a recent study (Lawrence and Slingo 2004) that 13 

showed how the inclusion of predicted vegetation phenology in this model had no impact on 14 

precipitation, even though soil wetness, surface latent heat flux, and near surface air temperature 15 

were all significantly affected over large areas of the globe.  The GFS/OSU model lies near the 16 

origin and has the weakest coupling strength because both soil moisture - evaporation connection 17 

and coupling between ET and precipitation are weak. 18 

 19 

d. Link between coupling strength and convection.  20 

Coupling strength is a net result of complex interactions between numerous process 21 

parameterizations in the AGCM. We have discerned different behaviors of land-atmosphere 22 
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coupling among the 12 GCMs in this study and have broken down the contributions to this 1 

coupling from the atmospheric and terrestrial branches of the hydrologic cycle.  Can we identify 2 

the process parameterizations that are mostly responsible for the differing coupling strengths? 3 

We now examine moist convective precipitation with this in mind.  Given that moist 4 

convection is often instigated by variations in near surface air temperature and humidity, whereas 5 

large scale condensation is strongly controlled by variations in the general circulation, we might 6 

naturally expect moist convection to be a key component of the pathway linking soil moisture 7 

variations and precipitation.   Figure 11a shows the global average of ΩP(S) -  ΩP(W) calculated 8 

separately for total precipitation, convective precipitation, and large-scale precipitation.  (Note 9 

that only seven models reported the precipitation components separately.)  With the exception of 10 

the NSIPP model, the contribution of soil moisture to similarity in the convective component is 11 

60-200% greater than its contribution to similarity in the large-scale component.  The fact that 12 

ΩP(S) -  ΩP(W) tends to be larger for convective precipitation than for large-scale precipitation 13 

supports the idea that convective precipitation is more sensitive to land surface moisture 14 

variations.  15 

 In Figure 11b, the ΩP(S) -  ΩP(W) values are weighted by the fractional contributions of 16 

the convective precipitation component to total precipitation.  This plot shows that convective 17 

precipitation bears most of the signal of soil moisture’s impact on precipitation, due in large part 18 

to the dominance of convective precipitation during boreal summer.  Based on the bottom plot, 19 

the coupling between surface fluxes and precipitation is indeed via the convective precipitation 20 

scheme in the AGCMs.  21 
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Not examined separately here are the many aspects of the moist convective 1 

parameterization (convective triggers, depth of detrainment, droplet microphysics, evaporation of 2 

falling rain, downdrafts) that can affect the evolution of temperature and humidity of the 3 

boundary layer and can thus induce intermodel differences in simulated land-atmosphere 4 

coupling strength.  Additional sensitivity experiments with more comprehensive diagnostics, 5 

perhaps in a single column model setting, would be needed to address more fully the role of 6 

moist convection in the coupling.  7 

 8 

4. Discussion and Summary 9 

Through coordinated numerical experiments with a dozen AGCMs as part of the GLACE 10 

project, the impacts of soil moisture conditions on rainfall generation have been examined for the 11 

boreal summer season. These impacts are found to be a function of hydroclimatological regime 12 

and are heavily affected by the complex physical process parameterizations implemented in the 13 

AGCM.  14 

In general, impacts of soil moisture on rainfall are strong only in the transition zones 15 

between dry and wet areas. Multi-model analysis shows that the existence of “hot spots” of land-16 

atmosphere coupling in these areas is due to the coexistence there of a high sensitivity of ET to 17 

soil moisture and a high temporal variability of the ET signal.  In wet climates, where soil 18 

moisture is plentiful, ET is controlled not by soil moisture but by atmospheric demand (as 19 

determined in part by net radiation).  Specifying land moisture states in wet climates thus has 20 

little impact on ET and rainfall generation (cases i and ii in Figure 2). In dry climates, ET rates 21 

are sensitive to soil moisture, but the typical variations are generally too small to affect rainfall 22 
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generation (case iii in Figure 2).  Only in the transition zone between wet and dry climates, 1 

where ET variations are suitably high but are still sensitive to soil moisture, do the land states 2 

tend to have strong impacts on precipitation. 3 

The impact of soil moisture on rainfall varies widely from model to model. The GFDL, 4 

CAM3, and NSIPP models have the strongest land-atmosphere coupling strengths, and 5 

GFS/OSU, HadAM3, BMRC, and GEOS have the weakest (Table 1).  The breakdown of the 6 

coupling mechanism into two segments, the link between soil moisture and evaporation and the 7 

link between evaporation and precipitation, helps to identify some of the reasons for these 8 

differences.  Some models (CAM3, NSIPP) have a high coupling strength because their modeled 9 

atmospheres (particularly their convective schemes) are strongly sensitive to evaporation 10 

variations, whereas the atmospheres of other models (HadAM3, GEOS) are relatively insensitive 11 

to evaporation variations, leading to a weak coupling strength.   Most of the intermodel 12 

differences in coupling strength, however, can be explained by intermodel differences in the 13 

nature of the evaporation signal itself, as characterized by the diagnostic product (ΩE(S)-14 

 ΩE(W)) · σE(W).  Figure 6 suggests that in some of the hotspot regions of strong coupling, 15 

intermodel variations in the diagnostic product can explain more than 80% of intermodel 16 

variations in coupling strength.  Figures 8a and 10 summarize the impacts of the various factors 17 

on globally-averaged coupling strength for each model. 18 

In the companion paper (Koster et al, this issue), we noted that the ΩP diagnostic does not 19 

distinguish between local and remote land surface influences on precipitation.  One interpretation 20 

of the overall strong performance of the diagnostic product (ΩE(S)- ΩE(W)) · σE(W) in 21 
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reproducing ΩP is that the coupling between precipitation and soil moisture is indeed largely 1 

local.  Additional experiments would be needed to demonstrate this more definitively. 2 

For the understanding of land-atmosphere coupling strength, we can identify several 3 

additional issues that require further attention.  First, an objective quantification of large-scale 4 

coupling strength from observational data needs to be obtained; its absence is a major obstacle to 5 

the evaluation of model performance. Second, land-atmosphere coupling strength should be 6 

quantified for other seasons; presumably it will be weaker during seasons that feature less moist 7 

convection, though preliminary experiments with the CCSR/NIES model (not shown) suggest 8 

otherwise. Third, for a more detailed analysis of coupling strength in a more controlled setting, 9 

different configurations of convective precipitation schemes, boundary layer schemes, and ET 10 

formulations should be applied within individual models.  In particular, the use of implicit 11 

coupling of the land surface to the atmosphere (Polcher et al. 1998; Best et al. 2004) rather than 12 

the more common explicit or semi- implicit approaches should be investigated, as the former may 13 

lead to a “tighter” connection between the land surface and the planetary boundary layer, with 14 

consequent impacts on derived coupling strength.  Finally, the strength of land-atmosphere 15 

coupling should be quantified relative to that of other controls in the Earth’s climate system; for 16 

example, comparing the GLACE results above with those from a separate set of ensembles that 17 

use different SST boundary conditions for each ensemble member (drawn from observed 18 

interannual SST distributions) could establish the relative importance of land and ocean controls 19 

on precipitation variability. 20 

 21 
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List of Figures 1 

Fig 1. Average of: (a) ΩP(S)-  ΩP(W), (b) ΩE(S)-  ΩE(W), (c) standard deviation of ET, and (d) 2 

the weighted similarity diagnostic (ΩE(S)- ΩE(W)) · σE(W) across all twelve models. 3 

Fig 2. Idealized time series of evaporation for different ensemble members under four situations: 4 

(i) low ΩE with low σE, (ii) low ΩE with high σE, (iii) high ΩE with low σE, (iv) high ΩE with 5 

high σE. (see text for details). 6 

Fig 3. Scatter plots of: (a) ΩE(S)– ΩE(W), (b) σE , (c) (ΩE(S)– ΩE(W)) · σE, and (d) ΩP(S)–7 

 ΩP(W), all against mean soil wetness. All variables are averaged across the twelve models. 8 

Fig 4. Inter-model standard deviation of ΩE(S) -  ΩE (W) and ΩP(S) -  ΩP(W) among the twelve 9 

models (top) and the ratio of the mean to the standard deviation (bottom). 10 

Fig. 5: Global distribution of (ΩE(S)– ΩE(W)) · σE for the models participating in GLACE. 11 

Fig. 6 Areal average of (ΩE(S)-  ΩE (W)) · σE  vs. ΩP(S)-  ΩP(W) over global ice-free land points 12 

and some “hot spot” regions (indicated by dashed lines in Fig. 1) for all twelve models. 13 

Fig. 7 Global average of ΩP(S)-  ΩP(W) vs. ΩP(R)-  ΩP(W) over ice-free land points for all 14 

twelve models. 15 
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Fig. 8.  ΩE(S)-  ΩE(W) vs. σE for all twelve models, averaged over (a) global ice-free land points, 1 

(b) the Great Plains, (c) northern India, and (d) the Sahel.  The boundaries of the final three 2 

regions are demarcated in Figure 1. 3 

Figure 9.   (ΩE(S)-  ΩE(W)) · σE vs. (ΩE(R)-  ΩE(W)) · σE  for all twelve models, averaged over 4 

(a) global ice-free land points, (b) the Great Plains, (c) northern India, and (d) the Sahel.  The 5 

boundaries of the final three regions are demarcated in Figure 1. 6 

Figure 10.  Global average of (ΩE(S)-  ΩE(W)) · σE over ice-free land points (a measure of the 7 

strength of the soil moisture-evaporation connection)  versus spatial pattern correlation between 8 

(ΩE(R)-  ΩE(W)) · σE and ΩP(R)-  ΩP(W) (a measure of the strength of the evaporation-9 

precipitation connection) for all twelve models. 10 

Figure 11.  Top: Global average over ice-free land points of ΩP(S)-  ΩP(W) calculated separately 11 

from total precipitation, convective and large-scale precipitation components for the models that 12 

reported them separately.  Bottom: Same, but with values scaled by the relative contributions of 13 

the components to total precipitation. 14 

 15 
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 1 

Model SW—Precip. Rank SW—ET  Rank (ET—Precip.)1 Rank (ET—Precip.)2 Rank 
         

GFDL 0.040 1 0.387 1 0.211 7 0.104 4 
        

NSIPP 0.034 2 0.140 5 0.511 2 0.241 2 
        

CAM3 0.032 3 0.129 7 0.715 1 0.248 1 
        

CCCma 0.024 4 0.249 2 0.450 4 0.095 7 
        

CSIRO 0.014 5 0.151 4 0.042 11 0.097 6 
        

UCLA 0.011 6 0.114 8 0.267 6 0.099 5 
        

CCSR 0.009 7 0.104 9 0.453 3 0.090 8 
        

COLA 0.009 8 0.081 11 0.370 5 0.106 3 
        

GEOS 0.006 9 0.209 3 0.162 9 0.030 10 
        

BMRC 0.005 10 0.102 10 0.182 8 0.047 9 
        

HadAM3 0.002 11 0.129 6 -0.016 12 0.012 11 
        

GFS -0.004 12 0.024 12 0.082 10 -0.017 12 

Table 1. Globally-averaged (over non- ice land points) land-atmosphere coupling strength for all 2 

twelve models and in each segment of the path from soil wetness to precipitation, namely soil 3 

wetness - ET and ET – Precipitation.  (See text for details.) 4 

 5 
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 1 

Fig 1. Average of: (a) ΩP(S)-  ΩP(W), (b) ΩE(S)-  ΩE(W), (c) standard deviation of ET, and (d) 2 
the weighted similarity diagnostic (ΩE(S)- ΩE(W)) · σE(W) across all twelve models. 3 
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 1 

Fig 2. Idealized time series of evaporation for different ensemble members under four situations: 2 
(i) low ΩE with low σE, (ii) low ΩE with high σE, (iii) high ΩE with low σE, (iv) high ΩE with 3 
high σE. (see text for details). 4 



 33 

1 

 2 

 3 

Fig 3. Scatter plots of: (a) ΩE(S)– ΩE(W), (b) σE , (c) (ΩE(S)– ΩE(W)) · σE, and (d) ΩP(S)–4 
 ΩP(W), all against mean soil wetness. All variables are averaged across the twelve models. 5 

 6 
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 1 

Fig 4. Inter-model standard deviation of ΩE(S) -  ΩE (W) and ΩP(S) -  ΩP(W) among the twelve 2 
models (top) and the ratio of the mean to the standard deviation (bottom). 3 

 4 
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 1 

Fig. 5: Global distribution of (ΩE(S)– ΩE(W)) · σE for the models participating in GLACE.2 
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 1 

 2 

Fig. 6 Areal average of (ΩE(S)-  ΩE (W)) · σE  vs. ΩP(S)-  ΩP(W) over global ice-free land points 3 
and some “hot spot” regions (indicated by dashed lines in Fig. 1) for all twelve models. 4 
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 1 

Fig. 7 Global average of ΩP(S)-  ΩP(W) vs. ΩP(R)-  ΩP(W) over ice-free land points for all 2 
twelve models. 3 

 4 
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 3 

Fig. 8.  ΩE(S)-  ΩE (W) vs. σE for all twelve models, averaged over (a) global ice-free land 4 
points, (b) the Great Plains, (c) northern India, and (d) the Sahel.  The boundaries of the final 5 
three regions are demarcated in Figure 1.6 
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 2 

 3 

 Figure 9.   (ΩE(S)-  ΩE(W)) · σE vs. (ΩE(R)-  ΩE(W)) · σE  for all twelve models, averaged over 4 
(a) global ice-free land points, (b) the Great Plains, (c) northern India, and (d) the Sahel.  The 5 
boundaries of the final three regions are demarcated in Figure 1.  6 

 7 
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 1 

Figure 10.  Global average of (ΩE(S)-  ΩE(W)) · σE over ice-free land points (a measure of the 2 
strength of the soil moisture-evaporation connection) versus spatial pattern correlation between 3 
(ΩE(R)-  ΩE(W)) · σE and ΩP(R)-  ΩP(W) (a measure of the strength of the evaporation-4 
precipitation connection) for all twelve models. 5 
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 2 

Figure 11.  Top: Global average over ice-free land points of ΩP(S)-  ΩP(W) calculated separately 3 
from total precipitation, convective and large-scale precipitation components for the models that 4 
reported them separately.  Bottom: Same, but with values scaled by the relative contributions of 5 
the components to total precipitation. 6 

 7 


